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"RANKING AND SELECTION PROCEDURES*

/ Robert E. Bechhofer
.Department of Operations Research

Cornell University'..
Ithaca, New York 14853

1. In roduction

loin recent years statisticians have become, increasingly concerned with the

meaningful formulation and solution of certain multiple-decision problems which

aria* in experimentation. Thus, for example, when an experimenter conducts tests

. to compare the peiforvances of several competing categories of items, his ulti-

mate objective often is to select.the category (or categories) which is (are)

best,. goodness being measured -in trirms of a particular parameter (e.g., the

population mean or the population variance) assotiated with the random variable

being observed. To accomplish this the experimenter requires a statistical

decision procedure which will teXl him how many observations to take, how to

take these' 'observations, and based on these observations which population(s) to

choose; the decision procedure should have the property that the probability of

an incorrect selection (or, more generally, the risk or expected loss) is con-

trolled at some specified level.

In response to the need for such.decision procedures, research statisti-

cians have been studying various possible appropriate formulations of these

problems, and have developed a body of statistical methodology to cope with

them. The procedures have come to be referred to as ranking and selection-

* The purpose of this paper is to introduce the reader to these

procedures, to describe some of them and the philosophy underlying their use,

and to discuss their properties.

In Section 2 we will pose th normal means problem, and use it as a

vehicle for motivating some of the b ic ideas. The two most commonly adopted

formulations of ranking and selection problems, namely the so-called

indifference-zone approach and the subset approach, will be described. The

attributes of single-stage, two-stage, and sequential procedures devised for

the normal means problem, under different assumptions concerning the population

variances, will be assessed. In Section 3 we sketch some nnalogous results for

the'normal variances problem, and in Section 4 we mention results for parameters

of other distributions.

-----------------

This research was supported in part by the U.S. Army Research Office-
. Durham under Contract DAIIC04-73-C-0008 and by the Office of Naval Research

under Contract NOO01#-07-A-0077-0020.
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The number of research papers wi-itten. on subjects in this field is now

vast; it,is hoped that this,brief introduction will stimulate the reader to

explore the literature, and to apply the procedur4s where appropriate.

2. The normal means problem

A very important problem which arises frequefitly in applications is that

of selecting the normalpdpulation which has the largest population mean. Thus,

, for example, 'the ordnance engineer might be conducting firing programs to com-

pare the ballistic performance of different types of projectiles (in which case

.his objective might be to select-that type which, on the average, travels the

greatest distance), or the medical iesearch worker might be studying the' response

of patientc to different kinds of analgesic drugs (in whtch case his interest

might lit in.selectLng that drug which producbs, on the average, the longest

period of time without pain), or the agronomist might be conducting field trials

with different varieties of grain (in which case his purpose might ,be to selept

that variety which produces, on the. average, the largest yield per acre). In all

of these cases l yalues of the means are deemed to be desirable; however, in

other cases small values of the means might be considered desirable. The proce-

dures that we'will describe can, with minor modifications, handle these latter

cases as well.

In Sections 2.1 and 2.1.1 we shall state the statistical assumptions

which underlie the procedpres that have been 'developed. Then we shall describe

several approaches to the selection problem.

2.1 Statistical 'assuiptions

We shall assume that we haVe' k sources ,Rt (ln,<)c) 'f normally

distributed data, the ith source having population mean U and population

variance 2i; population ni (ll<.) should be thought of as being associated
with thoughtwith the itW categbry. The P, are assumed'to be unknown. Let 1 •

' 3 J denote the ranked values olf the V it is ass med that the pairing

of the fl with the P ([]Ui,J,) Jis completely unknown. Possible assump-

tions concerning the oa 111.ii.)) will be discussecd in Section 2.3.1. Throughout

this p(uper l i,=.,2,,. )" will de'note the jt11 observation from

all observatlons being assumed indcpendent.

• "3
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2.2 Some formulations

The two most commonly used formulations of' the selection problem are

due to Bechhofer [1954] and Gupta E1956], [1965); these are referrod to as the

indif'forence-zone approach and the subbt approach, respectively, The approaches

are described below.

. ,2.2.1 The indifference-zoneapproach

The goal ind piobability requirement associated with the

indifference-zone approach are:

Goal: "To select the population associated with k(2.1).

It is assumed that prior to the start of experimentation the experimenter can

specify two constants (6*,P*)} (O•8*<ai/kcPI'<l) which are then incorporated

into the following probability requirement:

Probability requirement:

ProbiSelecting the population associated with (2k2 )> p, (2.2)
whenever P1kJ -"[k-l) > "

The experimenter then restricts consideration to procedures which guarantee (2.2).

(In (2.2) the specified quantity 8* can be thought of as the smallest difference
"worth detecting" between the population mean of the "best" and "second best"

population; P* is specified strictly greater than i/k since a probability of

I/k can be achieved by choosing one of the c populations at random.)

2.2.2 'rhe subset approach

The goal and probability requirement associated with the subset

approach are:

Goal: "To select a (non-empty) subset of the pOpUlatiOti:4 (2.3)

which contains the population associated with

It is assumed that prlor to the start of oxperimdntation the experimenter can

specify a constant (P?*) (1/k<P*<l) which is then Incorporated into the follow-

ing probability requirement;
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'Probablity requirement:

Prob{Selected subset'contains the population associated with >[k) Lp
regardless of the values of the U1 (l~i•k). (2.4)

The experimenter then rostricts consideration to procedures which guarantee (2.4).

Remark 1: It Is to be noted that the experimenter plans his experiment assuming

that the population means are nbt all equal; this is a very reasonable assumption

in almost all:real-life situations. He is interested in identifying the "best"

population -- in this case the population with the largest population mean. Goal

(2.1) leads to a k-decision problem since the experimenter must choose one of the

k populations based on the outcome of his experiment (i.e., his possible deci-

sions are: H1I is best, or _ 2 is best, or ... , or Hk is best). Similarly,

goal (2.3) leads to a (2k-1)-decision problem since the experimenter must choose
one of the 2 k-I non-empty subsets of the k populations based on the outcome

of his experiment (e.g., for k%3 his possible decisions are; only HI is in

the subset, only J2 is in the subset, o 1P3 is In the subset, ni and n2

are in the subset, n1 and n3 are in the subset, n2 and H3 are in the

subset, n1 and 112 and " 3 are in the subset). These multi-decision approaches

are in marked contrast to the classical 2-decision test-of-homogeneity approach
afforded by the Analysis of Variance; in that approach the experimenter tests the

(usually completely unrealistic) hypothesis that the . k population means are

equal, and decides based on the outcome of the experiment either to accept the

hypothesis or to re the hypothesis.

Remark 2: As noted above, goal (2.1) leads to a k-decision problem. However,

depending on the practical situation under consideration,.the experimonter can,

using the indifference-zone approach, pose more general goals. For example, he

may wish to select the t (l•t.-i) best populations with regard to order, or

he may wish to select the t (lt;k-l) best populations without regard to order-,

t being fixed before the start of experimentation. (Both goals roduce to (2.1)

when t=l.) These more general goals lead to a [k!/(k-t)!]-decision problem

and a [kl/tl(k-t)Ij-decision problein,.respectively. Such general goals and

others are discussed in Bechhofer [!954] and Mahamunulu [1967].

932



Remark 3: For goal (2.1) and the indifference-zone approach, th6 experimenter

always ends up by selecting a single population. For goal (2.3) and the subset

approach, the experimenter ends up by selecting 1 or 2 or --- or k

populations, depending on the outcome of the experiment; thus for this latter,

approach the number of populations in the selected subset is a random variable,

2.2.3 Other approaches

Santner [1975) has.proposed a restricted subset approach in which

the experimenter selects 1 'or 2 or *a,# or, c populations, depending on

the'outcome of the experiment, where c (lLc<jk) is decided on and fixed before

the start of experimentation; his approach can be regarded as bridging the

indifference-zone and subset approaches since if c=l his approach reducen to

the indifference-zone approach while if c=k it reduces to 'tlie subset approach.

Other approaches in which more general "loss functions" are used have been pro-

posed by Somerville [1954) and Fairweather [1968]. An approach in which the pi

are assumed to have prior distributions has bean considered by Dunnott [1960"

while a' similor idea from a Bayesian point of view has been proposed by Raiffa

and Schlaiffer [1961) and Deely and Gupta [19681. However, for brevity we will

not discuss these or other approaches.

2.3 AssumPtions concerning the variances

2.3.1 Possible assumptions

In order to devise procedures which, will guarantee (2.2) or

(2.4) for the normal means problem, it is necessary to make an assumption con-

cerning the values of the 2 (l< <Jk). Which assumption it is appropriate foroi
the experimenter to make in any particular practical situation depends on the
information available to him at the time that he plans his experiment. The four

most common assumptions are that:
a) The vaues of the a (J ) are known, and all arc

equal to a2 (soy). (2.5a)

b) The values of the oa (lýi<c) are known., but not all

are equal.- (7. 5b)

e) The values oil the o2 , are unknown, but it is
known that they have a common value a (say). (25u)

d) The values of the 2 (l< ,<•) are completely unknown. (2.5d)

933



2.3.2 The variance assumption and associated procedurez,

Once the experimenter has adopted one of these assumptions he then

must choose a selection procedure which was derived under that particular assump-

tion.

Thus, for example, if he wishes to guarantee (2.2) and adopts

assumption (2.5a) or (2.5b), then he can use a single-stage procedure (Bechhofer

[1954)), a two-stage procedure (Alam [1970) or (Tamhane [1975)), an open sequen-

tial procedure without elimination (Bechhofer, Kiefer, Sobel [19683), or a closed

sequential procedure with elimination (Paulson [1964)). If he wishes to guarantee

(2.2) and adopts assumption (2.5c), then he cannot use a single-staee procedure

(see Dudewicz [1971]) although he can use a two-stage procedure (Bechhofer,

Dunnett, Sobel [19543) or a sequential procedure (Paulson [1964]); similarly,

if he wishes to guarantee (2.2) and adopts assumption (2.5d), then he cannot use

a single-stage procedure although he can use a two-stage procedure (Dudewicz and

Dalal [1971) or Rinott [1974)). Finally, if the experimenter wishes to guarantee

(2.4), and. he ad6pts assumption (2.5a) or (2.5c), then he can use a single-stage

procedure (Gupta [1955], [1965)).

When the experimenter has adopted a particular assumption and as a

consequence has the option of choosing among several competii|g procedures, each

one of which' will~guarentee his probability requirement, he then chooses one of

these procedures on the basis of various possible operational or cost criteria.

An indication of such criteria will be given in our later discussion. In the

next section we shall describe certain selection procedures. Our emphasis will

be on procedures which can be used with the indifference-zone approach to

guarantee (2.2).

2.4 Procedures for use with the indifference-zone approach under the

assumption of common known variance

In this section we shall describe three procedures, each one of which

will guarantee (2.2) when assumption (2.5a) is made; minor modifications of these

procedures will-guarantee (2.2) when assumption (2.5b) is made. The procedures

will be introduced in the order of their historical development, each being

designed to afford different options to the experimenter.
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2.4.1 Single-stage procedure

The easiest type of procedure to implement is a single-stage one.

The following single-stage procedure was. proposed by Bechhofer [1954); constants

(see a), below) necessary to implement this procedure are given in Table I.c.

"a) Take a common number N of observations from each of the k

populations where N. is the smallest integer greater than or

equal to (Ok ped/6*) 2 .
N

b) Calculate Y, xN (1sii), and let X x< '~X
i[1] [2) [k) (2.6)

denote the ranked values of the (2.-)

c) Select the population which yielded __-k] as the one associated

Swith- Ck'"-- copue th.h

Note: The constants ck,p* are computed under the assumption that the

Pi (l'•.i~c) are in the so-called. least-favorable (LO• -. configuration, i.e.,

pil C Irk-I) "rk .

Table I

Values of c

k

2 3 4 5 7 10

0.99 3.2900 3.6173 3.7970 3.9196 4.0861 4.2456

0.95 2.3262 2.7101 2.9162 3.0552 3.2417 3.4182
0.90 1.8124 2.2302 2.4516 2.5997 2.7972 2.9829

0.80 1.1902 1.65ý4 1.8932 2.0528 2.2639' 2.4608

0.60 0.3583 0.8852 1.1532 1.3287 1.5583 1.7700

The valulis in this table are abstracted from Table I of Bechhofer

E190,13 where values for other k and P* are also given. Addi-
ttonal vnlues for k o n*l r. 2(1)51 and .P* z 0.99$ 0.975, 0.95,

0.90, 0.75 are contained in Table I of Gupta [19633, Gupta's values
must be multiplied by 62 in order to obtain the ekp - values

required in (2.6).
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2.4.2 Open-ended sequential procedure without elimination

The sfngle-stage procedure of Section 2.4.1 is conservative in the

sense that the constants Cp, necessary to implement it are computed under

the azsumption that the population means are in the LF-configuration; however,

it has been shown (Hall [1959)) that the probability, requirement (2.2) cannot

be guaranteed with a smaller N if the experimenter restricts consideration

to single-stage procedures. -If this restriction is eliminated, and multistage

procedures are permitted, then certain gains can be achieved. What is desired

is a multi-stage procedure which not only will guarantee the probability require-

ment (.2.2) when the population means are in the LF-configuration, but also will

require a smaller' number of observations per population, on the ayerage, than

the N of (2.6) when the population means are in very favorable configurations--
In particular when ( 'kj " P[k- l)/O is largq. The following .uential

procedure, which possesses these attributes, was. proposed by Bechhofer, 1(iefor,

and Sobel [19688, pp. 258-9, 264-7.

"a) Take one observation from each of the k populations at
m

each stage of experimentation. Let • X denote the
J=l

cumulative sum from nl (i•k) at the mth stage of
m m --

experimentation, and let X[Ili X<2)j <t..< I X kli
j=1 J=l j=1

m
denote the ranked, values of the • Xi.

ijlJ~z (2.7)
b) At the mth stage of experimentation (m=1,2,...) compute

m m

Z k I exp - l

Then proceed as fcllows:

1) if Z (I-P*)/PI, stop experimtntation and select the

population which yielded ý X klj as the one associated

"with 1[k]"k'

, 936
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il) if Zm > (1-P*)/P*, take another observation frop each of

the k populations and compute Z

Continue in this manner until the rule 6alls for stopping."

Remark 4: For (2.7) the observations are taken in vectors, each vector consti-

tuting a !tage, there being one observation from each population in every vector.

The number of stages (i.e., number of observations per population) necessary to

terminate experimentation is a random variable. The expected number of stages to
terminate experimentation has been shown (B-K-S [3.968], Tables 12.8.2 and 12.8.3)
to be less than N for many configurations of the vi (l~i-); in particular,

if (V[k] - V[k-lJ)/a is large, then with high probability experimentation will

cease after only a small number of stages. Regardless of the configuration of

the •i (l1,i<k) experimentation will cease with probability one after a finite
number of stages.

2.4.3 Closed sequential procedure with elimination

The sequential procedure of Section 2.4.2 has two possible drawbacks:

i) It is openended, i.e., before the start of experimentation it is not possible

to give a finite upper bound on the number of stages to terminate experimentation,

and Ji) It does not eliminate "non-contending" populations, i.e., it continues to

sample from populations which, based on observations obtained in the early stages

of experimentation, would appear to be out of contention for being selected as

"best." The following sequentialprocedure, which overcomes these drawbacks

of (2.7), was proposed by Paulson [19643; like (2.7) it guarantees the probability

requirement (2.2) when the population means are in the Lr-configuration, and

also tends to cease experimentation early when the population means are in very

favorable configurations:

For fixed A (O<l•5*/2) let a [o/(V-2)log[(k-l)/(1-P*)0, and

lqt W X the largest integer less than a /A. Paulson's procedure is actually

a family of procedures which depend on the choice of X; in Remark 9, below,

we shall mak', some comments on the role of X.

"Tako on(, observation from each 'of the k populations at the
first stage of experimentation. Eliminate from further considera-

tion any population A i for which a1 - A < max X - X If

937



all but one population is eliminated after the first stage, stop

experi.mentation and select the remaining population as the one

associated with Prk]" Otherwise, go on Vo the second stage. and take

one observation from each population niot yet eliminated. At stage

m (2ýpn<W,) take one observation from eas.h population not eliminated

after the (m-I)st stage, and then eliminate from further considera-

tion any remaining population I1 for which , (2.8)

m m
a~ -MA<max( I Xj )- I Xj

where the sums are only for populations left after the (m-l)st

stage. If all but one population is eliminated after- the mth
stage, stop experimentation and select the remaining population

as the one associated with "[k]; otherwise go on to the (mil)st
stage. If more than one population remains after stage WV

terminate experimentation at the (WN+l)st stage by selecting

the remaining population with the largest sum of the (WA÷+)

observations as the one associated with [Ek]"J

Remark 5: The procedure (2.8) never requires more than W +l stages to terminate

experimentation.

Remark 6: The procedure (2.8) permanently eliminates apparently non-contending

populations; thus the number of observations taken at the mth stage of experi-

mentation is less than or equal to the number of observations taken at the

(m-l)st stage of experimentation.

Remark 7: The cost of experimentation using procedures (2.7) and (2.8) can be

measured in terms of expected number of stages to terminate axprLmonetation

and/or expected total number of observations to terminate experimentation.

Which one is an appropriate measure will depend cn the pkactical situation at

hand.

Remark 0: Ramberg [19663 has demonstrated using Monte Carlo sampling methods

that
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max E({umber of stages to terminate experimentation)

and .p

max E{Total number of observations to terminate experimentation)

are less for (2.8) than for (2.7) when PO is high (i.e., close to unity) but

the inequality is ýeversed if P* is sufficieiitly small; Perng [1969) has

studied that question analytically. This Pesult is of practical interest

iince it compares the performance of (2.1) and (2.9) when U[1J, 2[k)' i.e.,

when, unknown to the experimenter, all of the population meanp are equal and

thus the expected number of stages and the expected total number of observations

are at their maxima.

Remark 9: Fabian [1974) pointed out the advantage of choosing X 60/2, and

recommended for that choice of A that l-P* in aA be replaced by 2(1-P%)

yielding a6', 2  D2ol/6*]log[(k-l)/2(l-P*)] = b (say); then b replaces

aX and 80/2 replaces A in (2.8). This modified procedure still guarantees

the probability requirement (2.2) when the population means are in the

LF-configuration. It uniformly (in the vj) reduces the expected number of

stages and expected total number of observations relative to the ones that

would have been obtained with the unmodified procedure employing A = 6*/2;

in addition, in either the family of unmodified Paulson procedures or in the

family of modified Paulson procedures the choice A 06/2 has the property that

max E{Total number of observations to terminate experimentation) is
Al,9P2,v...,"pk
approximately minimized for p* close to unity.

2.4.4 Two-stage procedure

The sequential procedures (2.7) and (2.8) have the drawbacks that

they may not be appropriate for use In certain types of experimentation. For

example, in agricultural experimentation where yields can be 6btained only

once per year (or per growing season), and thus only one vector of observations

can be obtained per time period, multi-stage experimentation is impractical.
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In such. situations two-stage experimentation would appear to be appropriate.

Alam (1970) and Tamhane [1975) have developed two-stage procedures which guarantee

the probability requirement (2.2) when the population means are in the LF-

Sconfiguration; -their procedures screen out the apparently non-contending popu-

lations in the first stage, and concentrate sampling on the remaining populations

in the second (terminal) stage. Tamhane's procedure has the added virtue of

possessing a minimax property similar to that achieved by Fabian's modification.

of (2.8) when. X Aft/2.

2.5 Procedures for use with the indifference-zone approach under he.
assumption of common unknown or compiletely unknown variances .

As was mentioned in Section 2.3.2, if the experimenter wishes to

guarantee (2.2) and adopts assumption (2.5c) or (2.5d) then he cannot use a
single-stage procedure. In this section we shall consider two-stage procedures

which accomplish these objectives.

2.5.1 Two-stage procedure for the common unknown variance case

The following two-stage procedure for the common unknown variance

case was proposed by Bechhofer, Dunnett, and Sobel [19543; constants hkPn

(see c), below) necessary to implement this procedure for P* = 0.95 are

given in Table II.

"a) In the first stage take an arbitrary common number- N0 > 1
of observations from each of the k populations.

12 k N N
b) Calculate S (X - 0 X /N )2 /n which is an

i~l jul ii i,
unbiased estimate of 02 based on n = k(N 0 -l) degrees of

freedom.

c) Enter the appropriate table (e.g., Table II, below, for

p, = 0.95) with n z k(No-1) and the specified P*, and

obtain a constant hk,Po,n. = h (say).

d) In the second stage, take a common number N-N0 of additional

observations from each of the k populations where

9)40

44
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N aN 0  if 2(hS/*) < N0

N = 2(hS/6*) 3 if 2(hS/6P) > N.0 9

(2.9)

and [y) denotes the smallest integer equal to or greater than y.

e) Calculate the k over-all (first-stage plus'second stage) ,sample
N. N N*

.sums x li)) arnd let X '[3 <90O

N~N.
~ denote the ranked. values of the x.

f) Select the population which yielded x as the one

~~assciate with M~ck]. ha

6aue o.9 2.3 2.56t 2.71 2.92 .1

5 2.89 2.27 2.48 2.62 2.082 3.301

6. 1.86 .2 2. 42 2.5 5 2.71 2.92 31

7 1.83 2.18 2.38 2.50 2.682 2.61

10 1.81 2.15 2.34 2.4I7 2.64 2.81

15 1.75 2.07 2. 24 2.38 2.51 2.67

20 1.72 2.03 2.19 2.30 2.46 2.60

30 1.70 1.99 2.15 2.25 2.40 2.54

s0 1.67 1.95 2.10 2.21 2.35 2.4A

* 1.64 1.92 "2. 06 2.16 2.29 2.42
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SThe values in this table are abstracted from Table la of

Dunnett [1955); Table lb of Dunnett [1955) gives corre-

sponding values for Ph.u 0.99; D4nnett's p equals

our k-i.

Note: -The value of h given for the n u - row of Dunnett E1955-, Table la,.k,P*tn
is the same as the value given by Gupta [1963), Table I, for the same k-i * p n n

and. P* 0.95 1-*.

Remark 16: The total number of observations N required by the two-stage procedure
is a random variable since its value depends on the value of S 2; no additional

* 2observations are taken in the second stage if S, is sufficiently small.

Remark 11: Paulson [1964), Section 5, proposed an open-ended sequential procedure

which permanently eliminates non-contending populations; his procedure is appli-

cable in situations in which the common variance is unknown,

2.5.2 Two-stage procedures for the compýltely unknown variance case

Dudewicz and Dalal [1971), and also Rinott [1974), proposed two-

stage procedures for the completely unknown variance case. Like (2.9), the

common number of observations in the first stage for each of these procedures

is arbitrary (>l)o while the total number of observations per population is

a random variable.

2.6 Procedure for use with the subset approach under the assumption of

com mon (known or unknown) variance

As was mentioned in Section 2.3.2, if the experimenter wishes to

guarantee (2.4) and adopts assumption 2.5a) or 2.5c), than he can use a single-.

stage procedure. The following single-stage procedure was proposed by Gupta

r19563, [1965) for use under assumption 2.5c); constants dk,p*,n (see c), below)

necessary to implement this procedure ore given in Table III. (Under assumption

2.5a, the random variable S in d) of (2.10) is replaced by a, and the value

of dkPn for n * - is used.)
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"a)0 Ta)%o a common arbitrary number N > I of observations from

each of the )c populations.
* N

b) Calculate X ~ I/N 'a~..c and 16t 711 < 1 t k
Jul(1 (2 k

denote the ranked values of the X;also-calculate

2 k N N 2
s .*z I (Xi I X1j/N) /n which is an unbiasied estimate

Lal Juljl

of 02 býased on n Pk(W-1) degrees of freedom. (.0

o) Enter'the appropriate table (egTable 111, below, for

P*i 6.95) with n a k(N-1) and the specified PA. and.

obtain a constant d r- d (say).

4) Retain the population ni ftiýiJO) in the selected subset if

and only if X I ->Xk dI91

Table III

Values of d for P* 0.95

a k
n

2 5 10

15 2.48 3.34 3.78

20 2.44 3.25 3.67

30 2.40 3.19 3;59

60 2.361 3.12 3.50

The values in this table are abstracted from Table I of Gupta

and Sobel [1957) which given many additional' d-values for

P* 0.75, 0.90, 0.95, 0.975, 0.99.

Nota i d k,Pal W ritk,P*,n where h kjP*,n Is g'iiven in. Table ii.

Remark 12: The width of the "Yardstick" in d) of (2.10) is d$//X which decreases

with N; thus the larger thu value of N, the smei1ler the expected number of

~populatlons that will be included in the selected subset. Also, for fixed 'N
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the mome favorable the configuration of the population means (e.g., the larger

the value of W ' Lkl9 1/0' the smaller the expected number of populations

that will be included in the selected subset., (Th~s expected number always lies

between unity and kP*.)

Remark 13:. In practice the subset approach is often-used for screening purposes,

since,,it tends to eliminate "non-.contending" populations (i.e., those with small

,i-values) from the selected subset. The populations retained in the subset can

then be subjected to further study in an independeni follow-up .experiment in

which the Sindifference-zone approach.(say) is used.

2.? Factorial experiments involving means

The statistical model given -in Section 2.1 is appropriate for single-

factor experiments. In a two-factor experiment we have rc normal populations
2• (l. l<c) ,with population means vij -and population variances a j.

ij rr C,

It is sometimes appropriate to assume that Vi = + a + Oj a 1 c : 0),
' iu jul.

i.e., that there Is no interaction between the factors, and that a :2 2

(111V, l<JLc). Here the a and the 8 are referred'to a's the "effects" of

the first and second factor, respectively. It is assumed that p, -the m i

the 0., and a2 are unknown. Let s[ 1] -[ 2 ) ."' [) and

8[13 [2 . 1.c,, denote the ranked values of the a and the it; it

is assumed that the pairing of the nl• with the a[t3 and OEj] (li<r, 11.4c)

is completely unknown.

In the above setup it is possible to consider goals such as

Goal: "To select the 'level' of the first factor associated

with 0 ir], and simultaneouply to select the 'level' (2.11)

of the second factnr associated with

with associated probability requirements. Such problems are' treated for the

indifference-zone approach in Section 4 of Bechhofer [1954). The virtue of

conducting factorial experiments in this situation is discussed by Bawa [19723.

The indifferonce-zone selection p ,ocedures of Sections 2.4 and 2.5 can be used

in multi-factor experiment, it is only necessary to make appropriate modifica-

tions in the procedures.

, 9)41"

a



It is also possible to conduct single-factor or multi-factor ranking

and selection experiments using the standard experiment'al designs such as ran-

domized blocks and Latin squares, and these designs..play the same type of role

here as they do in classical hypothesis-testing situations.

2.8 Means vs. a fixed known standard

In Section W.4.1-2.4.4 and 2.5.1-2.5.2 the selection procedures

proposed were devised to select the category associated. with the largest

P-value. However, in certain classes of experiments 'even the "best" one of

the competing categories, i.e., the category with the largest ji-value, may not

be good enough to warrant the experimenter's selecting it. eor example, if the

competing categories are drugs, the best one' may not be worthy of consideration

unless the expected period of immunity obtained with that drug Is at least some

apecified period of time; or if the competing categories are types of heat

treatment of steel, the best one may not be deemed satisfactory unless the

expected tensile strength resulting from that type of treatment is at least
some specified minimum value. Such types of nroblams involving comparisons.

of means with a fixed known standard are considered by Bechhofer and Turnbull

[19743, [1975a); in the first paper a single-stage procedure is proposed under

assumption (2.5a), and in the second a two-stage procedure is proposed under

assumption (2.5c). These procedures are generalizations of Bechhofer [1954)

and Bechhofer, Dunnett, and Sobel [1954). Gupta and Sobel [1958) proposed a

single-stage procedure for this problem using the subset approach.

3. The normal variances problem

Section 2 dealt with the normal means problem. Corresponding procedures

exist for the normal variances problem. Ranking and selection problems involving

variances arise, for example, when the ordnance engineer is interested in

selecting that type of projectile which yields the smallest dispersion of
range, or, when the laboratory technician is interested in selecting that

measuring instrumnent which has the highest precision (o.q., that scale which

has the groatest reproducibility). An analogue of the single-stage procedure

given in Bachhofer [1954) for normal moans is given in Bechhofor and Sobel

([1954] for normal variances; factorial experiments involving variances are

.treated in Bechhofer 11968a] and [1968b] using a model proposed in Bechhofer [19603.

945



Sechhofer and Turnbull, (1975Sb) is the counterpart for variances of Becbbofer and

Turnbull (1974). An .analogue of the procedure given in Gupta (19563 for normal

means in given in Gupta and Sobel Ul9623 for niormal!'variances.

4. The Bernoulli p_ problem_,.and other problains

Ranking and selection problems involving Bernoulli p's (i.e., probabilities

of "success"-on a single trial) arise, for example, when a congumer is interested.

In selecting that producer whose product has the smallest fraction defective.

An analogue of the procedure given in.Bechhof or (19543 for normal'means is

given in 1Iuyett and Sobel (1957) for Bernoul~li plst while the counterpart of the

procedure given in Gupta [19156). for nbrmal means Is given In Gupta and Sobel

(1960) for Bernoulli p's.

*Sobel (19514) proposed a 'sequential pr'ocedure for' selecting the expohnertial

-population with the largeat mean; his results have applicability in reliability

studies. Bechhofer, Kiefer, and Sobel [1968),.p.'6.3 considered sequential

procedures for ranking parameters of certain stochantic processes such as the

Poisson process and the Wiener process. Veirious research workers have proposed

procedures for many other ranking and selection problems invol~ving parameters

of distributions arising in practice.

5. Closing remarks

The ra~nkn and selection formulation of statistical prc~blems involving

inferences concerning k ). 2 -categories has wide applicability in the solution

of problems arising In experiimentation. In this paper we have sketched only

a small number of the relevant ideas and procedures-. The interested reader

-is referred to Bechhofer, Kiefer, and Sobel [1968) for references up to that

date, and to Gupta and Panchapakesan [1.972) for references to the latter data

concerning the subset approach. Additional and more recant Ireferences are given

by Wetherill and Ofosu [1fl74). The writer would appreciate learning of experi-

mental situations in which some of the procedures described herein have proved

helpful.
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